DropoutDAgger: A Bayesian Approach to Safe Imitation Learning

نویسندگان

  • Kunal Menda
  • Katherine Rose Driggs-Campbell
  • Mykel J. Kochenderfer
چکیده

While imitation learning is becoming common practice in robotics, this approach often suffers from data mismatch and compounding errors. DAgger is an iterative algorithm that addresses these issues by continually aggregating training data from both the expert and novice policies, but does not consider the impact of safety. We present a probabilistic extension to DAgger, which uses the distribution over actions provided by the novice policy, for a given observation. Our method, which we call DropoutDAgger, uses dropout to train the novice as a Bayesian neural network that provides insight to its confidence. Using the distribution over the novice’s actions, we estimate a probabilistic measure of safety with respect to the expert action, tuned to balance exploration and exploitation. The utility of this approach is evaluated on the MuJoCo HalfCheetah and in a simple driving experiment, demonstrating improved performance and safety compared to other DAgger variants and classic imitation learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian Approach to Imitation in Reinforcement Learning

In multiagent environments, forms of social learning such as teaching and imitation have been shown to aid the transfer of knowledge from experts to learners in reinforcement learning (RL). We recast the problem of imitation in a Bayesian framework. Our Bayesian imitation model allows a learner to smoothly pool prior knowledge, data obtained through interaction with the environment, and informa...

متن کامل

A Bayesian Model of Imitation in Infants and Robots

Learning through imitation is a powerful and versatile method for acquiring new behaviors. In humans, a wide range of behaviors, from styles of social interaction to tool use, are passed from one generation to another through imitative learning. Although imitation evolved through Darwinian means, it achieves Lamarckian ends: it is a mechanism for the inheritance of acquired characteristics. Unl...

متن کامل

A Model-Based Goal-Directed Bayesian Framework for Imitation Learning in Humans and Machines

Imitation offers a powerful mechanism for knowledge acquisition, particularly for intelligent agents (like infants) that lack the ability to transfer knowledge using language. Several algorithms and models have recently been proposed for imitation learning in humans and robots. However, few proposals offer a framework for imitation learning in noisy stochastic environments where the imitator mu...

متن کامل

Is Bayesian Imitation Learning the Route to Believable Gamebots?

As it strives to imitate observably successful actions, imitation learning allows for a quick acquisition of proven behaviors. Recent work from psychology and robotics suggests that Bayesian probability theory provides a mathematical framework for imitation learning. In this paper, we investigate the use of Bayesian imitation learning in realizing more life-like computer game characters. Follow...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.06166  شماره 

صفحات  -

تاریخ انتشار 2017